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Abstract—Spacecraft formations enable a variety of mission con-
cepts, from gravity reconstruction to extrasolar planet detection
to heliophysics observatories. In particular, space-based radio
interferometers can detect signals in frequency ranges that are
absorbed by Earth’s ionosphere or atmosphere. Furthermore,
such formation missions are now feasible under constrained cost
caps due to the growing availability of SmallSat components
with spaceflight heritage that are compatible the CubeSat form-
factor. Accordingly, we analyze a mission concept operating
multiple SmallSats in a passive cluster to establish a space-based
interferometer. The goal of this array is to reconstruct radio
emissions associated with Coronal Mass Ejections (CMEs) from
the Sun, giving us insight into the particle acceleration occurring
during these events. This low-cost mission concept presents
a number of unique challenges in regards to mission design
and navigation, particularly the configuration of the spacecraft
to optimize science return and the reconstruction of precise
spacecraft-spacecraft separation values. After providing a brief
overview of the mission concept, this paper presents several key
features of the mission design and orbit determination strategy
that enable this potential heliophysics mission.
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1. INTRODUCTION
Spacecraft formation flying enables a wide variety of mission
concepts, with one compelling application being space-based
very-long baseline interferometry (VLBI). While there is an
extensive literature on the design, guidance, and control of
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spacecraft formations [1], [2], and even entire textbooks
on the subject [3], there have been relatively few opera-
tional examples of missions flying spacecraft in clustered
formations (that is, close proximity, rather than extended
constellations such as the Global Position System [GPS]).
To date, the GRACE [4] and GRAIL [5] missions each
flew a pair of spacecraft in tandem to map the gravity of
the Earth and Moon, respectively. Likewise, the THEMIS
mission flew multiple spacecraft in Earth-orbits of varying
size and eccentricity [6]; the extended follow-on mission
ARTEMIS transferred two of the THEMIS spacecraft to lunar
libration point, and ultimately lunar-centric, orbits [7]. The
Magnetospheric Multiscale (MMS) mission, one of the first
true “cluster formation” missions, is comprised of 4 space-
craft in highly elliptical Earth-orbit studying the magnetic
reconnections in Earth’s magnetosphere [8]. One difficulty
with formation operations is that most mission concepts
require active control and reconfiguration of the formation
in order to meet specified geometries. Furthermore, active
cross-linking between the satellites is necessary to share
scientific data and the tracking signals needed for precise
relative positioning; such applications require extensive and
robust on-board processing and often entails the automated
detection of “signaling events”. Furthermore, the cost of
building and testing multiple spacecraft is often prohibitive
for cost-constrained budgets, though the growing availability
and capability of SmallSat technology has greatly reduced
this hurdle and led to an explosion in the number of proposed
formation missions [9].

Our mission concept proposes to place six SmallSats into
a geosynchronous (GEO) graveyard orbit, that is, altitudes
slightly above GEO where old spacecraft and boosters are
placed for disposal, where they would fly in a passive cluster
to establish a space-based interferometer. Each spacecraft
would operate independently and transmit data only to the
ground stations, reducing the complexity and cost of the
mission. All relevant science and operational data would be
processed using established ground-based capabilities, fur-
ther simplifying the development process. This array would
be used to image radio emissions associated with Coronal
Mass Ejections (CMEs) from the Sun, giving us insight
into the particle acceleration occurring during these events.
By understanding this particle acceleration, we can better
characterize the formation and evolution of these highly
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energetic events, with implications for long-term prediction
and mitigation strategies for hazardous space weather.

A number of unique challenges in regards to mission design
and navigation are addressed to enable this low-cost mission
concept. The spacecraft would be deployed as secondary
payloads into the GEO graveyard, where they must first be
navigated into the desired formation. Once in that formation,
the spacecraft must be distributed between 1 and 10 km in
the plane orthogonal to the Sun-line such that the baselines
forming the interferometer enable reconstruction of the radio
emissions. Furthermore, communication with the ground is
limited to once per week and the spacecraft use unbalanced
thrusters for momentum wheel desaturation, entailing addi-
tional constraints on the formation maintenance strategy. In
addition to the requirements on formation design and station-
keeping, the relative position knowledge of the spacecraft
must be known to within 3 meters in order to enable images
of CMEs to be reconstructed.

After providing a brief overview of the mission concept, this
paper presents several key features of the mission design and
orbit determination strategy, including: 1) the approach taken
to establish the initial spacecraft formation and maintain the
spacecraft position during the lifetime of the mission; 2)
the method used to optimize the distribution of the space-
craft in the plane orthogonal to the Sun, thus maximizing
science return; 3) use of GPS signals at GEO to meet the
relative position knowledge requirement; and 4) an alternate
positioning strategy using cross-links between the satellites
wherein tracking information, but no science data, is trans-
ferred within the formation.

2. INTERFEROMETRIC MISSION CONCEPT
Space-based radio astronomical arrays can address a wide
range of scientific questions, ranging from planetary and
extrasolar planetary magnetospheres and particle acceleration
at shocks in the solar wind and in astronomical sources to
potentially searching for the signatures of the first stars.The
KISS Study “Small Satellites: A Revolution in Space Sci-
ence” identified a concept called RELIC that would study
the energy transport from black holes in galaxies [10], and
a forthcoming KISS Study will also illustrate how a con-
stellation of small satellites could study the magnetic fields
of extrasolar planets.Further, the NASA Space Technology
Mission Directorate recently released a solicitation aimed at
technology development toward many aspects of cross-linked
constellations such as radio astronomical arrays.

A space-based radio astronomical array would operate as a
synthetic (phased) array, similar to ground-based arrays, but
with the key advantage of not being subjected to distortions
introduced by the Earth’s ionosphere.All radio astronomi-
cal arrays operate on the same principle - pairs of anten-
nas provide a measure of the Fourier transform of the sky
(scene) brightness.The key challenge with such arrays are
that although only a loose formation is required to obtain the
measurements, the relative position of the spacecraft at the
time of the measurement must be known. Although real-time
knowledge is not needed, meter to sub-meter (depending on
the wavelength being observed) knowledge of the spacecraft
baselines (i.e., separations) is needed during the science
data analysis. The challenges associated with forming such
a spacecraft constellation and determining relative position
knowledge are discussed in this paper.

To motivate this effort, our initial focus is on a space-based
array designed to image the radio emission associated with
coronal mass ejections (CMEs) from the Sun. The motivation
for this focus is two-fold. First, the radio emission from
CMEs is a direct tracer of the particle acceleration in the inner
heliosphere and potential magnetic connections from the
lower solar corona to the larger heliosphere: these questions
are among those highlighted in the Solar Decadal Study.2
Second, CME radio emission is quite strong such that only
a relatively small number of antennas is required, and a small
mission would make a fundamental advancement. Indeed, the
state-of-the-art for tracking CME radio emission is defined by
single antennas (Wind/WAVES, Stereo/SWAVES) in which
the tracking is accomplished by assuming a frequency-to-
density mapping.

In addition to having many astronomical uses, radio arrays
are useful in helping us understand various solar processes.
Although there are a number of solar observations that can
be made from the ground, these measurements have a cut-
off around 15 MHz due to the density of the ionosphere.
Single instruments on spacecraft such as WAVES on Wind
have measured various solar dynamics such as coronal mass
ejections (CMEs) and associated Type II and III Bursts, which
all give off telltale radiation in the radio range under 15
MHz. These observations could give us early warning of
an incoming CME or solar energetic particle event, and they
could also help observe CMEs in the disk of the sun, which
other instruments such as coronagraphs are unable to capture.
In parallel, recent development in CubeSat technology have
shown that low cost orbiting radio receivers are feasible. Con-
sequently, the next step would be to launch a number of radio
receivers to create an interferometer, thus enabling higher
sensitivity images of CME structure. Such an interferometer
would have the advantage of not being coplanar, a geometry
that cannot be achieved on Earth.

The details of the science motivation behind such an array,
along with the spacecraft and payload design is the subject
of a separate paper [11]. Table 1 presents the key driving
requirements that such an array would have on the spacecraft
cluster design and operation. These are the requirements
which are used for the remainder of this paper.

3. FORMATION DESIGN STRATEGY
The performance of the space-based radio interferometer is
inextricably linked to the relative motion of the spacecraft
composing the formation. Accordingly, we discuss the details
of the design strategy, including: (i) our use of natural relative
dynamics to alleviate the need for active formation control;
(ii) useful proxies for characterizing the ability of the array to
reconstruct the target radio emissions; and, (iii) a heuristic
search method to discover high-performing formation de-
signs.

Dynamical Systems Theory

Any formation design strategy must begin with a method to
predict and analyze both the absolute as well as relative mo-
tion of the spacecraft. The astrodynamics literature contains
numerous such schemes, though most are based upon one of
three basic principles:

• perturbations of conic elements or other representations of

2“Discover and characterize fundamental processes that occur both within
the heliosphere and throughout the Universe.”
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Table 1. Driving Science Requirements and Derived Mission Design Parameters

Science Requirement Mission Design Parameters
6 months baseline 8 months including
science operations Mission Duration checkouts and calibrations

Electrically short dipole
antennas in view of Sun Spacecraft Attitude Sun-pointed

Observations above Target Orbit GEO Altitude
Earth’s ionosphere Launch Vehicle Secondary payload / rideshare

Minimum of 5 spacecraft Formation Size 6 spacecraft
In plane perpendicular to Sun-spacecraft line: Design initial relative orbits such that separation

Maximum separation ≥ 10-km; Formation Shape of spacecraft in plane normal to Sun-spacecraft
Minimum separation ≤ 1-km vector varies from 0.5-km to 12-km over the orbit

17-ns relative position and timing Relative Position
uncertainties between spacecraft pairs Knowledge <3-m

orbital motion [12];
• the Clohessy-Wiltshire equations of relative motion [13];
or,
• application of dynamical systems theory (DST) [14];

see Alfriend et al. for a general treatment of the first two
methods [3]. Note that for the two-body dynamical model we
consider, all three design strategies can produce equivalent
relative motions given the correct assumptions and selection
criteria. However, we make use of DST for our investigation
due to its general flexibility when performing trade studies of
close proximity formations: the underlying dynamical regime
and baseline orbit can be freely exchanged without need to
extensively modify other portions of the design process.

The underlying basis for DST is the linearization of motion
around a baseline trajectory, in our case periodic, circular
motion about the Earth; see Table 2 for our notional orbital
characteristics.3 Since we operate in the relatively benign

Table 2. Baseline Orbit Parameters

Parameter Value Units
Altitude 37021 km

Eccentricity 0 –
Inclination 0 deg.

Period 25 hours

dynamical environment of the GEO graveyard, short-term
motion of the satellites is adequately described using Kep-
lerian motion

r̈ =
∂U

∂r
(1)

where r = [x, y, z]T and the potential function is given by

U∗ =
µ⊕
r

(2)

with position magnitude r =
√
x2 + y2 + z2 and Earth’s

gravitational parameter µ⊕ = 398600.4418km
3

s2 . For math-
ematical convenience, we non-dimensionalize the equations

3In principle, higher-order relative motion can be captured, but linearized
relative motion suffices for our specific formation design needs.

of motion by µ⊕ and the radius of Earth, R⊕ = 6378.14km,

resulting in the characteristic time t∗ =

√
R3
⊕

µ⊕
and the new

potential function

U =
1

r
. (3)

Motion relative to a reference trajectory is linearized as

ẋ = A(t)x (4)

with state vector x = [x, y, z, ẋ, ẏ, ż]T and time-varying
linearized dynamic matrix

A(t) =

[
03×3 I3×3
∂2U
∂r2 03×3

]
(5)

in an inertial frame. Propagating this linearized motion
along a trajectory results in the state transition matrix (STM),
Φ(t, t0), which maps variations in the initial state to changes
in the current state via

δx(t) = Φ(t, t0)δx(t0) (6)

with the change in STM given by

Φ̇(t, t0) = A(t)Φ(t, t0) (7)

and initial conditions

Φ(t0) = I6×6. (8)

When the STM is propagated for one period of a closed
orbit (i.e., Φ(T + t0, t0)), it is also termed the monodromy
matrix. Note that Eqs. (4) and (6)-(8) are general dynamical
equations valid for any model of orbital motion and Eq. (5) is
only altered when the equations of motion are also velocity
dependent, for example if they are expressed in a rotating
frame.

The STM maps differences in the initial conditions along
the resulting perturbed paths and contains information about
the underlying dynamical system. In particular, the mon-
odromy matrix reveals the fundamental relative motions of
the associated periodic orbit. The eigenvalues γi of the
monodromy matrix indicate the stability of the orbit while
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the associated eigenvectors Γ̂i can be used to selectively
excite the corresponding relative motion. For example, an
eigenvalue with magnitude ‖γi‖ > 1 denotes unstable mo-
tion; perturbing the initial state of the period orbit by the
step ε in the corresponding eigenvector direction establishes
an asymptotic departure from the periodic orbit along the
unstable manifold. Variations in the orbital initial conditions
due to exciting eigenvalue/eigenvector pairs are expressed as

x∗0(τ) = x0(τ) + u(τ,θ, ε) (9)

where τ is a time-like parameter specifying location on the
periodic orbit and u is a step into the invariant manifold
space. The manifold step for a single eigenvector is [15]

u(τ, θi, εi) = εi

(
cos(θi)<[Γ̂i(τ)]−sin(θi)=[Γ̂i(τ)]

)
(10)

where εi is the step magnitude, θi is an angular parameter,
and< and= denote the real and imaginary components of the
complex vector, respectively.4 By convention, we allow εi to
encompass both negative and positive values while we restrict
θi to fall in the interval [0◦, 180◦).5 We now generalize
the mathematical basis of the manifold step to allow linear
combinations of the eigenvectors, that is:

u(τ,θ, ε) =

n∑
i=1

εi

(
cos(θi)<[Γ̂i(τ)]− sin(θi)=[Γ̂i(τ)]

)
.

(11)
Using this formulation, we can selectively excite or suppress
components of the local natural flow relative to a baseline
orbit, leading to intricate combined manifold motion.

For our orbit in the GEO graveyard, ‖γi‖ = 1 for all
six eigenvalues, indicating dynamical stability and the pres-
ence of a multi-dimensional center manifold, or invariant
torus [15]. However, of the six eigenvectors, two form a
complex conjugate pair and another two are repeated strictly
real vectors, this latter phenomenon indicating that the mon-
odromy matrix is degenerate; the remaining two eigenvectors
are unique and strictly real. Thus, we can rewrite Eq. (11) as

u(ε,θ) = ε1Γ̂1 + ε2Γ̂2 + ε3Γ̂3+

ε4

(
cos(θ4)<[Γ̂4]− sin(θ4)=[Γ̂4]

)
(12)

while still retaining the ability to fully exploit the invariant
manifold space. Note that we have omitted τ , since we can
arbitrarily select a value for τ while still capturing all possible
relative formations: our underlying motion is Keplerian and
any perturbation at a specific location on the periodic orbit
results in perfectly periodic orbits that can be equally realized
from any other location on the reference trajectory. In our
following analysis, we use τ = 0, the location on the orbit
corresponding to x0 = [43399km, 0, 0, 0, 3.0306km/s, 0]T .
Inspecting Eq. (12), we are required to specify only 5 pa-
rameters, [ε1, ε2, ε3, ε4, θ4]T , to generate the 6-element vec-
tor defining the initial condition of a perturbed trajectory;
regardless of the manifold step taken, some fundamental
characteristic of the baseline periodic orbit is preserved. This
conserved quantity is the orbital energy, meaning that any
perturbed orbit we specify using DST will have the same

4When the eigenvector is fully real, that is, =[Γ̂i(τ)] = 0, the angular
parameter θi can be set to zero without loss of generality.
5It is mathematically equivalent to allow θi ∈ [0◦, 360◦) while restricting
εi to strictly non-negative values.

period as our baseline trajectory; thus, using DST has the
additional advantage of automatically preserving our desired
passive clustering of the spacecraft.6 Therefore, to initialize
an n-spacecraft passive formation, we need only select values
for 5n initialization parameters (30 parameters for our nom-
inal formation of 6 spacecraft), that is, 4n step magnitudes
and n angular offsets.

A Visual Method of Formation Design

While the DST formulation for generating spacecraft forma-
tions is quite amenable to automated search strategies, we
first wish to gain some insight into the invariant natural flow
associated with our mission scenario and test the potential
for human intuition in this complex design space. We begin
by assessing the behavior exhibited by each eigenvector in-
dividually, as illustrated in Fig. 1, where the circles indicate
the start of propagation, diamonds 1/4 of the orbit, triangles
1/2 of the orbit, and squares 3/4 of the orbit. Rather than

Figure 1. Relative motion arising from exciting individual
eigenvectors of the monodromy matrix, shown in axes

parallel to equatorial inertial frame axes but centered on the
GEO graveyard orbit.

the traditional RTN-frame, we use a set of axes (x̂, ŷ, ẑ)
parallel to an inertial, Earth-centered frame, with x̂ and ŷ
in the equatorial plane of Earth, but centered on the GEO
graveyard orbit because these quasi-inertial axes are more
convenient when assessing the performance of the forma-
tion as a Sun-observing interferometer. Two motions are
readily identifiable as along-track motion associated with the
degenerate repeated eigenvector Γ̂1 and out-of-plane motion
represented by the complex eigenvector Γ̂4. The two in-plane
motions linked to the strictly real, unique eigenvectors Γ̂2

and Γ̂3 exhibit cardioid relative motion in the quasi-inertial
frame. Note that we have generated these relative motions
by taking positive steps εi; using negative values would
produce mirror images across the relevant lines of symmetry.
Even this brief inspection reveals behaviors of interest: using
the along-track eigenvector produces the well-known “string-
of-pearls” formation, while combining the out-of-plane and
along-track motions yields elliptical relative motion in the
inertially directed axes.

6This behavior is not unique to our particular orbit: the monodromy matrix of
any periodic orbit will be deficient, leading to the preservation of an energy-
like parameter (energy for two-body orbits, Jacobi constant for restricted
three-body orbits, etc.). Bounded motion will not necessarily be preserved
for unstable orbits, but the energy-like value will be.
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Moving beyond the behavior of the individual manifold steps,
we are chiefly interested in how to use Eq. (12) to generate
effective linear combinations of the eigenvectors to initialize
the formation of spacecraft. To assess the qualitative behav-
ior of candidate relative trajectories we pre-generate sets of
linear combinations by sweeping through values for ε1, ε2,
ε3 and θ4, with the resulting manifold steps highlighted in
Fig. 2.7 Each colored sphere represents the attainable space
of initial relative positions from a particular combination of
three eigenvectors (the remaining step magnitude εi = 0),
normalized to a step of 10-km. The color of each initial
condition is determined by mapping ± values of the steps
ε and [0◦, 180◦) values of the angular parameter θ to rgb-
color channels whereas the size of the marker indicates the
maximum excursion from the baseline orbit: larger dots
remain closer over the 25-hour period. Each sphere of ini-
tial displacements reveals specific concentrations of closely
bound relative trajectories, associated with roughly equal but
opposite signed steps in the εi parameters. The angular
parameter θ4 then affects the phasing within the identified
regions. Conveniently, there are 6 of these regions of interest,
matching the number spacecraft composing our prospective
formation. An intuitive design strategy is then to place one
spacecraft in each of these low-excursion regions, for exam-
ple the prospective formation shown in Fig. 3. The closest
spacecraft-spacecraft approach over the course of the 25-hour
period is 3.25-km, while the furthest spacecraft-spacecraft
recession is 15-km and the maximum relative velocity is 0.75-
m/s. However, just because the sample cluster we generated
is visually elegant and intuitively obvious doesn’t necessarily
guarantee good performance when operating as an interfer-
ometer; indeed, given the large and complex trade-space
presented by the formation design problem, it is exceedingly
unlikely that we stumbled upon the optimal design via cosmic
coincidence. Thus, an alternate design method is desirable.
However, whether we continue using this visually guided
design strategy or pursue a more automated approach, we
must first develop a metric to evaluate the performance of a
particular configuration of spacecraft.

Assessing Formation Performance

Several investigations have examined the optimization of
spacecraft formations for interferometric imaging, however
common assumptions are either active control and reconfig-
uration of the formation [16], [17], [18] and/or imaging of
a known target object [19], [20]. Thus, specific geometries
could be targeted at particular epochs while minimizing the
fuel consumption for deterministic maneuvers. In contrast,
the goal of our interferometer mission concept is to image
radio emissions from solar flare events, which are beyond our
current ability to predict accurately. Accordingly, the imaging
capability of our spacecraft cluster must be maintained at
consistent levels over long durations so that images of the
events are captured as they occur. Therefore, we seek a
performance metric that evaluates the formation performance
over extended periods of time, since our nominal mission
spans six months or more.

Our first step in defining the interferometric performance
criterion is to evaluate what characteristics of the formation
lead to good imaging capability. To observe our target radio
frequencies, the spacecraft-spacecraft baselines must fall be-
tween 0.5-km and 12-km in separation when projected onto

7We omit the combination Γ̂1, Γ̂2, Γ̂3 because all these components of
motion are in-plane with the reference orbit and the resulting “sphere”
collapses to a visually uninteresting ring, not because this type of motion
in lacks value when constructing a formation of spacecraft.

the plane normal to the Sun-spacecraft line, conventionally
termed the (u, v)-plane. Further, the baselines must be
distributed both in magnitude and angular separation in order
to enable reconstruction of the center, size, orientation, and
extent of the radio emitting region near the Sun. Combining
these criteria, our goal then becomes to scatter the spacecraft-
spacecraft baselines across a (u, v)-annulus, as illustrated
in Fig. 4; more precisely, we seek to place the projected
separations into as many unique bins within the annulus as
possible. We have selected the annulus discretization to bal-
ance between two extremes: i) too few bins and we will have
too many bins filled by more than one baseline; and, ii) too
many bins and the baselines may be very close to one another
even though they reside in unique bins. Thus, we choose
to use 36 bins (3 rings of 12 bins each), or approximately
1.5 times the number of unique baselines (20). Two-sided
baselines are highlighted because the interferometric concept
we consider can selectively make use of either direction of
the spacecraft-spacecraft relative position vector, though not
both directions at the same time.

The science annulus is defined in the (u, v)-plane perpendic-
ular to the Sun-spacecraft line, however the Sun-Earth and
therefore the Sun-spacecraft direction changes throughout
the course of the year. Thus, optimizing the coverage of
the passive formation for one particular Sun-line orientation
may lead to significantly degraded performance during other
portions of the year. To this end, we consider multiple ori-
entations of the (u, v)-annulus as shown in Fig. 5, where the
shifting directions approximate the seasonal shifts as Earth
orbits the Sun. We only consider the four directions shown
because annuli placed in opposite directions will simply yield
mirror distributions: the distribution in the respective (u, v)-
annulus remains the same whether the Sun-Earth line is
parallel or anti-parallel to the x̂′-axis. Note that we have now
defined a new coordinate system such that x̂′ and ŷ′ reside in
the ecliptic plane, a rotation from (x, y, z) of 23.5◦ about the
x̂/x̂′-axis. The axes remain centered on the GEO graveyard
orbit and inertially directed, with ẑ′ completing the right-
hand set. The coordinate set (x′′, y′′, z′′) is defined by a 45◦

rotation from (x′, y′, z′) about the ẑ′/ẑ′′ axis.

For the sample formation highlighted in Fig. 3, snapshots
of the resulting projected baselines are shown in Fig. 6.
For the purposes of illustration we select three epochs of
interest, equally spaced around the 25-hour orbit, and the
(u, v)-plane is chosen to coincide with the local (x′, z′)-
plane. The center and edge colors of the glyphs correspond
to the spacecraft pair forming the respective interferometric
baseline. Even though the relative configuration alters over
time, the baseline distribution consistently covers significant
portions of the science annulus. The mean number of unique
bins occupied is 19.4, averaged over the 25-hour orbit and the
four directions shown in Fig. 5. This value is approximately
2/3 of the theoretical maximum of 30 bins that could be
covered by the 15 double-sided separations between the 6
spacecraft. Achieving this theoretical maximum may or may
not be possible using only natural dynamics, but we still
desire to improve the human-designed formation or find a
better configuration, if feasible.

Formation Design via Particle Swarm Optimization

A variety of optimization techniques could be applied to the
optimization of the formation performance, however two key
considerations drive our selection of an appropriate scheme.
First, the objective described in the preceding discussion
is unlikely to have smooth derivatives, severely restricting
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ε1 → Red, ε2 → Green, θ4 → Blue ε1 → Red, ε3 → Green, θ4 → Blue ε2 → Red, ε3 → Green, θ4 → Blue

Figure 2. Spheres of position steps arising from eigenvector combinations, color keys indicate rgb mapping for initialization
parameters.
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the utility of gradient-based methods. Second, the global
optimization of a constellations presents an extensive and
complex trade space for which local optimization methods
are not suitable, even when the number of spacecraft is
pre-determined. Accordingly we turn to heuristic meth-
ods of optimization, specifically particle swarm optimization
(PSO) [21], [22], which has been applied in a wide variety of
applications [23]. PSO is particularly suitable for our design
scenario because of its convenient treatment of continuous

Figure 5. Different projections of the science annulus with
respect to the inertially oriented axes.

variables and global search capability.

PSO operates by mimicking the social behaviors of ani-
mals, for example the flocking of birds or the schooling of
fish. Agents, or “particles”, representing specific designs are
distributed throughout a design space, with the subsequent
trajectory of each agent through the solution space directed
by the behavior and performance of the surrounding agents.
The particle swarm is iterated, with updates to the jth agent
given by the equation

Xj = Xj + Vj (13)

with the design vector Xj composed of the DST steps ε and
θ for the six spacecraft and the “velocity” term Vj governed
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Figure 6. Spacecraft-spacecraft baseline snapshots in the projected (u, v)-annulus, visually guided formation design.

by

Vj = wIVj + wP$(Pj −Xj) + wG$(G−Xj). (14)

On each iteration, the new velocity is determined by the
current Vj , the difference from each agent’s previous best
solutionPj , and the difference from the globally best solution
G found amongst all the agents. The terms wI , wP , wG are
weighting parameters (“inertia”, “personal”, and “global”, re-
spectively) while $ represents a value randomly drawn from
the uniform distribution over the interval [0,1]. While there
are many variations on the basic scheme, our implementation
of PSO uses the following steps:

1. A set of agents defining 6-spacecraft configurations is
randomly distributed throughout the solution space;
2. All formation designs are evaluated based upon their dis-
tribution of the spacecraft-spacecraft baselines, averaged over
the 25-hour orbit and the four directions shown in Fig. 5;
3. Each agent’s personal best as well as the global best
configurations are updated, if necessary;
4. The velocity terms and agent states are updated as defined
by Eqs (13) and (14);
5. Repeat Steps 2-4 until a maximum number of iterations is
reached.

While the preceding formulation does not necessarily guar-
antee convergence, solution stability was exhibited for all
PSO runs within the maximum number of iterations; that is,
the last 10 or so generations led to no improvement in the
globally best solution found,G.

We apply PSO to two cases of interest: (i) broad searches
with no a priori knowledge; and, (ii) directed searches
seeded by our visually-generated formation design. Recall
that our visually guided design strategy limited our solution
generation to specific combinations of the monodromy matrix
eigenvectors and drove our selection to particular relative
orbits. Therefore, we conduct the broad search in order to
assess the benefit of relaxing these restrictions and exploring
the full solution space. We perform the directed search to
evaluate what improvement could be made to the visually
intuitive spacecraft cluster. The parameters for the two parti-
cle swarm cases are shown in Table 3; the bounds on ε and
θ represent intervals over which these values are initialized
prior to iteration. For the broad search, random samples
are drawn from the uniform distribution between the stated
bounds; for the directed run, random samples are drawn
from the intervals with the given bounds but centered on the
nominal design values from the visually designed formation.

The broad PSO search for formation design results in the rel-

Table 3. Parameters for Particle Swarm Runs

Parameter Broad Directed Units
# Iterations 50 50 –
# Agents 2000 2000 –

Inertia weight, wI 0.5 0.5 –
Personal weight, wP 0.5 0.5 –
Global weight, wG 0.5 0.5 –

ε Bound [-5,5] [-0.5,0.5] km
θ Bound [0,180) [-10,10] deg

ative orbit configurations illustrated in Fig. 7, with projected
baseline snapshots in Fig. 9. This formation design results
in a mean value of 20.4 bins filled over the 25-hour orbit,
with closest spacecraft-spacecraft approach 1.63-km, furthest
recession of 18-km, and maximum relative velocity 0.87-m/s.
We further note that it is unlikely that a human operator would
have discovered this particular cluster design, as the relative
orbits do not clearly map back to the set of initial condition
spheres shown in Fig. 2. Likewise, the PSO search around the
human designed formation results in the trajectories shown
in Fig. 8 and (u, v)-annulus coverage plotted in Fig. 10; the
closest approach reduces to 3.00-km, the maximum distance
is now 13-km, and the maximum relative velocity remains
0.75-m/s. However, the average number of bins occupied is
21.1 over the 25-hour orbit, a clear improvement over the 19.4
from the un-optimized formation. Clearly, the PSO imple-
mentation is able to produce high-value formation designs,
or improve upon existing ones, while greatly reducing the
required effort from human operators.
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Figure 7. Formation resulting from broad-searching PSO
run.
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4. ON-ORBIT OPERATIONS
Once a desired formation configurations has been established,
our next step is to assess the operational performance of this
design. Two key questions immediately arise:

• How are the spacecraft deployed to their respective orbits?
• How does the passive cluster evolve in the presence of
perturbing forces?

To address these concerns, we perform Monte Carlo analysis
of a notional deployment case as well as a sample two-week
operations interval. Note that in the following discussion, our
intent is to establish feasibility, not optimality; for now, it is
enough to demonstrate that the proposed formation can be
flown safely and with a reasonable ∆V budget.

Formation Deployment

We assume deployment into our target GEO graveyard orbit
as secondary payloads on a dedicated GEO communications
satellite. Once it deploys the SmallSats, the carrier satellite
returns to GEO altitude, leaving the formation flying space-
craft to operate independently. We further assume that we can
specify the epoch and direction of ejection from the main bus,
within reasonable assumptions on the capability of the main
GEO satellite. We assume use of the Canisterized Satellite
Dispenser (CSD) for accommodation on the main GEO satel-
lite; the estimated separation velocity is 1.45 m/s [24]. Our
deployment strategy for all six spacecraft is a straight-forward
three-burn scheme, as depicted in Fig. 11. After a one hour
coast following the initial separation from the carrier satellite,
a pre-defined stabilization burn is executed to cancel the
ejection velocity imparted by the deployment canister. This
burn is directed anti-parallel to the assumed initial ejection
velocity vector. Three days after the cancellation maneuver,
a targeting maneuver is executed to transfer to the destination
orbit, followed three days later by the final insertion burn.
Three day intervals are chosen to allow adequate collection
of navigational data for orbit reconstruction and design times
for the maneuvers. The spacecraft are ejected in 60◦ incre-
ments in the plane orthogonal to the inertial velocity of the
central GEO graveyard orbit, as demonstrated by the sample
deployment shown in Fig. 12. Note that the spacecraft can
recede up to a few hundred kilometers from the target cluster
before the intermediate targeting maneuver is performed.

While one-off solutions can be readily generated, we are
primarily interested in the required ∆v budget for the de-
ployment and orbit initialization. Accordingly, we perform
a Monte Carlo sensitivity analysis for the stabilization, tar-
geting, and insertion maneuvers. We assume execution and
timing uncertainties in the initial ejection and cancellation
maneuvers, with nominal and 1-σ uncertainties tabulated in
Table 4. We have deliberately selected conservative values

Table 4. Deployment Monte Carlo Parameters

Parameter Nominal 1-σ Uncertainty Units
Ejection Impulse

Magnitude 1.45 0.13 m/s
Epoch past τ = 0 180 1 min

Direction ∗ 2 deg
Cancellation Burn

Magnitude 1.45 0.15 m/s
Coast duration 60 2 min

for uncertainties to account for possible design changes,
uncalibrated maneuvers, and the assumed capabilities of the
carrier spacecraft. We have neglected uncertainties on the
subsequent targeting and insertion maneuvers because the
calibrated accuracy of the thrusters is sub-mm/s, well below
the other error contributions. A Monte Carlo run of 5000
sample deployments results in the total ∆v performance
highlighted in Table 5. As we see, the ∆v costs for the

Table 5. Results of Deployment Monte Carlo Run

SC ∆v Value (m/s)
Mean 3.2199

Yellow 1-σ 0.43406
∆V -99 4.5221
Mean 2.6593

Blue 1-σ 0.2742
∆V -99 3.4819
Mean 2.7454

Pink 1-σ 0.4021
∆V -99 3.9517
Mean 3.1714

Red 1-σ 0.41186
∆V -99 4.407
Mean 2.6571

Green 1-σ 0.3061
∆V -99 3.5755
Mean 2.9749

Purple 1-σ 0.3636
∆V -99 4.0657

three deployment maneuvers are relatively modest and well
within the capability of available SmallSat cold-gas propul-
sion systems [25]. As expected, the average magnitude of the
stabilization burn is commensurate with the ejection impulse.
Each satellite splits the remaining ∆v cost approximately
equally between the targeting and insertion burns, with no
consistent pattern on which is larger for any given space-
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Figure 9. Spacecraft-spacecraft baseline snapshots in the projected (u, v)-annulus, broad-searching PSO run.
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Figure 10. Spacecraft-spacecraft baseline snapshots in the projected (u, v)-annulus, directed PSO seeded by visually
designed spacecraft cluster.

Figure 11. Timeline of spacecraft deployment and insertion
into the target orbits.

craft. Thus, while our deployment scheme is not necessarily
optimal for this formation configuration, we have at least
demonstrated the feasibility of our strategy. As a point
of comparison, an investigation in LEO calculated a ratio
of total ∆v cost to ejection impulse of approximately 4.7,
which compares favorably to our derived ratio of 3.1, though
their scheme was modified to also explicitly avoid collision
risk [26].

Orbit Maintenance

Once the spacecraft have been inserted into their target rela-
tive orbits, they enter a quiet observation mode enabling the
measurement of radio signals from the Sun. Since the for-
mation will not be actively reconfigured during the nominal
mission, the operational goal then becomes maintaining the
loose clustering of the spacecraft in their respective trajecto-
ries. At GEO altitudes, atmospheric drag is non-existent and
gravity effects due to Earth’s non-spherical shape are greatly

attenuated. Thus, the dominant perturbing terms are multi-
body gravity from the Moon and Sun, solar radiation pressure
(SRP), and the maneuvers needed to desaturate the spacecraft
momentum wheels. While lunar and solar perturbations do
cause long-term secular drifts in the inertial orbits, we are
not primarily concerned with maintaining precise positioning
with respect to Earth, and so only the relative perturbations
matter for our application. Likewise, SRP plays an important
long-term effect on absolute positioning, but perturbations
within the formation are slight because all spacecraft remain
actively sun-pointed during the course of normal operations,
with attitude perturbations expected to average out over long
durations. This leaves only maneuvering as a significant
source of short-term perturbations to the relative motion of
the spacecraft.

In contrast to gravity and SRP, the desaturation maneuvers
are expected to result in significant perturbations to the rela-
tive motion of the spacecraft because they are implemented
using unbalanced thrusters. Thus, every desaturation event
imparts a small ∆v to the spacecraft, where this velocity
increment slightly alters the relative trajectories of the cluster.
Our nominal desaturation strategy is to direct the maneuvers
perpendicular to the inertial velocity direction so as to hold
the semi-major axis nearly constant. The thrust and velocity
vectors are naturally perpendicular twice per orbit because we
keep the spacecraft solar panels sun-pointed, and the thrusters
are aligned with solar panel normal vector. Thus, implemen-
tation of our desaturation scheme is therefore a simple matter
of timing the maneuvers for particular epochs. Desaturations
are only performed every 3 days, allowing ample freedom in
timing the burns appropriately. This straight-forward thrust-
ing law imparts very small changes to the semi-major axis
and ensures the orbital period is held nearly constant, thus
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Figure 12. Planar and zoomed views of deployment and relative orbit insertion, in equatorial xyz-frame.

greatly reducing the largest impact on relative drift within the
formation.

To assess the viability of our desaturation plan, we perform a
Monte Carlo analysis spanning two weeks, or one operational
cycle of our passive cluster. Table 6 lists the nominal and
uncertainty parameters used for the Monte Carlo analysis;
note that we do not consider timing uncertainties because of
the nanosecond-level accuracy of the on-board GPS clocks.
However, position and velocity errors introduced by the un-

Table 6. Desaturation Monte Carlo Parameters

Parameter Value Units
Magnitude - Nominal 3.2 cm/s

Magnitude - 1-σ Uncertainty 2 %
Pointing - 1-σ Uncertainty 0.33 deg.

Interval between burns 75 hrs

balanced maneuvers are not accounted for when implement-
ing subsequent desaturations, reflecting the passive operation
of the cluster. Gravitational perturbations from the Sun and
Moon are included in the Monte Carlo simulations, along
with a flat plate model for SRP and 8×8 spherical harmonics
from the Earth. Figure 13 shows a representative perturbed
formation over the two-week span, including a trajectory
view, a time history of the orbital periods, and a plot of
the spacecraft-spacecraft close approaches. As can be seen,
small disturbances to the formation period can engender drifts
in the relative orbits. On the other hand, close approaches
between the spacecraft are still on the order of kilometers
and the period discrepancies are readily corrected using a
single impulse per spacecraft [27]. A Monte Carlo run of
10,000 samples results in an average corrective ∆v of 0.5-
mm/s, with a 3-σ value of 1.5-mm/s, to return all spacecraft
to the nominal 25-hour period. This prediction is below that
for another GEO formation-keeping study [28], though that
investigation sought to maintain precise positioning relative
to Earth in addition to controlling relative motion. In contrast,
a formation-keeping study conducted for LEO predicted ∆v
magnitudes comparable to ours [29]; this work incorporated
atmospheric disturbances to the orbital motion, but did not
include perturbations due to momentum desaturation.

5. ABOVE-THE-BELT GNSS DETERMINATION
Over the years, GPS has become commonplace for orbit
determination in low Earth orbit (LEO). However, using GPS
for positioning above the GPS constellation has been less
common because the GPS system was designed for terrestrial
and LEO users. The GPS transmit antennas point toward the
Earth, with no guarantee of reliable signal strength beyond
the main beam of the transmitted signal, out to approximately
23 degrees. However, weaker sidelobe signals exist beyond
the main beam and can be used for navigation, provided
adequate signal-to-noise. A diagram of the transmitted signal
structure from the GPS satellites is shown in Figure 14. In
order to track satellites, a user in an altitude at or above
medium Earth orbit (MEO) would need to rely on acquiring
signals transmitted from the opposite side of the Earth from
the main beam as well as the sidelobe signals.

Using GPS for orbit determination above the GPS constella-
tion altitude has been a topic of discussion for a number of
years, with the one of the first published uses of GPS at GEO
presented by Kronman in 2000 [30]. Recent successful uses
of GPS at GEO have proved that the GPS L1 frequency can
be acquired and tracked for orbit determination purposes at
altitudes above MEO. In 2012, Unwin, et al. [31] showed
that the SGR-GEO single frequency GPS receiver onboard
the GIOVE-A satellite was capable of functioning just beyond
MEO by acquiring and tracking GPS satellites. In 2012,
Lockeed Martin launched the SBIRS GEO1 satellite with a
dual frequency GPS receiver onboard for satellite navigation
[32]. Most recently, Winternitz, et al [33] demonstrated on
the MMS mission that the GPS L1 signal can not only be
tracked above the GPS constellation, but out to an altitude of
12 Earth radii. Furthermore, the upcoming GOES-R satellites
plan to do precise orbit determination in GEO strictly via the
use of GPS signals [34].

In this paper we propose to use dual frequency global nav-
igation satellite system (GNSS) signals to determine the
relative locations of the constellation of the six satellites in
the GEO graveyard orbit. In order to overcome the visibility
limitations with tracking only GPS, we will use both GPS
and GLONASS dual frequency signals to attain meter-level
accuracy of the individual spacecraft. The relative positioning
required for the interferometer will be computed by simply
differencing the orbits to obtain the baseline relative posi-
tions.
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Figure 14. The diagram shows the relative locations of the
GNSS satellites to the user satellites in a GEO graveyard

orbit. The shaded section shows the blockage from the Earth
and the small amount of main beam signal available to a

spacecraft at a GEO altitude.

Modeling of spacecraft motion in a GEO Graveyard orbit

In order to simulate the orbital scenario for these six satellites,
the GIPSY-OASIS II (GOA-II) software package is used.
Developed at JPL, GOA-II has a long history of use for
precise orbit determination for scientific missions, including
such missions as TOPX-POSEIDON [35], Jason-1 [36], the
multiple-antenna COSMIC satellites [37], as well as the
tandem-flying GRACE satellites [38]. To simulate the satel-
lites in the GEO graveyard orbit using GOA-II, the spacecraft
initial states are input and the orbits are generated over a 30-
hour period for each of the satellites. For the transmitter loca-
tions, the GPS and GLONASS orbits produced by JPL were
used. While the simulations make use of the orbital locations
for the GLONASS satellites, the signal characteristics are
modeled as GPS satellites. May 19, 2016 was chosen as the
date for the analyses, with reconstructed orbital parameters
for a total of 54 satellites available. Of these 54 satellites, 31
are GPS satellites and 23 are GLONASS satellites.

In order to accurately simulate the visibility for the satellites,
the spacecraft attitude and antenna orientation must be mod-
eled. For the proposed satellites, the antennas are located on
opposite faces of the 6U satellite with the antennas on the +X̂

and −X̂ faces and the solar panels on the +Ẑ face, as shown
in Fig. 15. Because the solar panels must always be pointing
toward the Sun, this constrains the +Ẑ spacecraft face to
always be pointed in the Sun direction. With this constraint,
there are therefore times when the GNSS antennas are not
pointed in the Earth-direction. For a given spacecraft position
with respect to the Earth, ~p, velocity, ~v, and Sun direction,
~sun, the spacecraft orientation over the orbit is defined using

the equations below. First, the spacecraft +Ẑ direction is

Figure 15. The spacecraft model - 6U satellites with the
+Ẑ axis pointing toward the Sun and the X̂ axes pointed

toward the Earth

defined to be aligned with the vector from the Earth to the
Sun.

Ẑ‖ ~sun (15)

Then, the orbit normal direction, n̂, is computed as the nor-
malized cross product of the spacecraft position and velocity.

n̂ =
~p× ~v
| ~p× ~v |

(16)

To maximize the amount of time that the GNSS antennas are
pointed toward the Earth, the spacecraft X̂ direction is then
computed as the cross product of the normal unit vector with
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the spacecraft Ẑ vector, and the spacecraft Ŷ is defined as the
cross product of Ẑ with X̂ .

X̂ = n̂× Ẑ (17)

Ŷ = Ẑ × X̂ (18)

When simulating data using the spacecraft attitude and an-
tenna orientations as defined above, the azimuth and elevation
of the received and transmitted signals can be computed.
Using a local elevation cutoff of 0 degrees on the receiver side
and 0 degrees on the transmitter side bounds the total number
of satellites available over the 30-hour simulation period, as
shown in Figure 16, with an average of 42 satellites visible at
any given moment.

Figure 16. When an elevation cutoff of 0 degrees on the
transmitter and receiver satellites is used, an average of 42

satellites are visible over the 30-hour period.

Link Budget Calculation

However, in order to gain a realistic idea of the number of
satellites that are capable of being tracked at any given time,
we must apply a link budget calculation. For simplicity, the
L1 and L2 transmit patterns of the GPS III satellite are used to
represent both the GPS and GLONASS satellites [39]. Plots
of the L1 and L2 antenna gain patterns are shown below in
Figure 17 and 18, while a candidate antenna gain pattern
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for use on the SmallSats is plotted in Fig. 19. Note that the
transmit gain patterns go out to 90 degrees off-boresight, so
the main beam as well as sidelobes are considered in the link
budget calculation. Azimuthal variations are also considered
in the calculations.

For the L1 and L2 frequencies, the received signal strength is
computed as follows:

SrecL1 =
PxmitL1GxmitGrecL1

Lcable

(
λL1

4πR

)2

(19)

SrecL2 =
PxmitL2GxmitGrecL2

Lcable

(
λL2

4πR

)2

(20)

where SrecL1 and SrecL2 are the received signal strengths,
PxmtL1 and PxmitL2 are the transmit power, GXmitL1
and GXmitL2 are the transmitter gain patterns toward the
spacecraft, GrecL1 and GrecL2 are the received antenna gain
patterns toward the GNSS satellite, Lcable is the cable loss,
and

(
λL2

4πR

)2
is the space and efficiency loss.
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The simulations assume a GNSS receiver based on JPL’s Cion
and TriG GNSS receivers [40]. Tracking of GNSS L1 and
L2 signals expected in the proposed GEO graveyard orbit is
feasible, as demonstrated in the GRAIL experiment in 2012
[41]. Based on tests during this experiment, a receiver of this
type is capable of acquiring a signal with a strength of 30
dB, and can maintain lock on a signal at the 25 dB level.
Using the link budget calculation for both the L1 and L2
frequencies, as shown in equations 19 and 20, the resulting
number of satellites over the 30-hour simulation period is
shown in Fig. 20 for the times when both the L1 or L2 signals
are available, averaging to 8.6 satellites over the 30-hour
period. For consistency, thresholds of 30 dB for acquisition
and 25 dB for lock maintenance where used when generating
Fig. 20.
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Figure 20. When an elevation cutoff of 0 degrees on the
transmitter and receiver satellites is used, an average of 8.6
satellites are above the acquisition cutoff at the start of track

and above the tracking threshold at end of track over the
30-hour period.

Simulated Errors

In order to include the expected errors on a small satellite
of this type in a GEO graveyard orbit, several types of
errors were considered. Because of the high altitude and
compact formation, errors in gravity models will not be very
pronounced. However, the dynamic modeling errors related
to solar radiation pressure will be distinct for each of the six
spacecraft.8 Solar radiation pressure modeling errors were
injected by simulating data with attitude errors of 1 to 3
degrees in each axis as well as erroneous sizes for the space-
craft faces that differ for each satellite from truth by 10 to
20%. In addition to errors related to solar radiation pressure,
GNSS orbit error was modeled and noise was added to all
of the data at a level of 5-meters for pseudorange and 5-cm
for carrier phase. Since our orbit reconstruction simulation
covers one 30-hour interval, we omit errors introduced due
to desaturation events; in practice, these disturbances can
be characterized as part of the normal orbit determination
process.

Simulation Results

Once the simulated signals have been created for the six
small spacecraft, the data are then processed using GOA-II.
When processing the simulated data, the truth attitude and
spacecraft which were generated with errors in the attitude
and spacecraft surface modeling, the truth attitude is used,
as well as the truth spacecraft panel models. Generating the

8We distinguish between perturbations that affect the long-term evolution
of the formation and modeling errors that reduce the short-term accuracy
of orbit reconstructions. Accordingly, SRP may not dominate in terms of
station-keeping, but remains an important factor in orbit determination.

simulated data with the attitude and surface modeling errors
in place, and then processing with the assumed truth values
mirrors the situation that would happen operationally. To
process these data, a reduced dynamic orbit determination
strategy is used [42]. A reduced dynamic orbit strategy
is one in which empirical accelerations are estimated in
order to account for unmodeled accelerations, such as mis-
modeled solar radiation pressure or drag. Because the orbit
modeling errors at this high altitude do not contain significant
accelerations from forces such as drag, which are difficult to
accurately model, the reduced dynamic orbit determination
strategy here relies heavily on the well-known dynamics of
the orbit, and less so on strength of the relatively-noisy
measurement data.

The orbit error associated with processing the simulated
data for two satellites positioned independently is shown in
Figure 21. Because of the common errors between the two
satellites, the relative error decreases when the baseline is
formed between the two satellites, as shown in Figure 22. The
average root mean square (RMS) error for the six satellites
is 1.08-m in 3D position and 3.5-ns for clock error; these
clock and relative ranging uncertainties satisfy the required
knowledge accuracy for the interferometric mission concept,
as stated in Table 1.
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Figure 21. The orbit error for a single satellite has a 3-D
RMS of 1.14-m for Yellow satellite (top) and 1.02-m for

Pink satellite (bottom).

6. RELATIVE POSITIONING VIA UHF
CROSSLINKS

An alternative strategy to meet the relative position knowl-
edge requirement has been formulated based on measure-
ments of the range and bearing between the spacecraft. For
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Figure 22. The relative orbit error for a baseline between
Yellow and Pink satellites has a 3-D RMS of 0.51-m.

this scheme, each spacecraft will carry a ultra-high frequency
(UHF) radio which can measure spacecraft-to-spacecraft
range. Moreover, each spacecraft will carry a star tracker,
a camera that can measure the orientation of each spacecraft
with respect to the distant stars. The same camera can be used
to track a light-emitting diode (LED) attached to the outside
surface of each spacecraft in the formation. By looking
at these LEDs, the star trackers can measure spacecraft-
to-spacecraft bearing (right ascension and declination) with
respect to an inertially aligned reference frame.

Crosslink Tracking Schedule

By locking-on the UHF radios of two different spacecraft, for
example, Yellow and Blue from Fig. 3, the range between
these two spacecraft can be measured. It takes approximately
9 minutes to lock-on two UHF radios. Once they are locked-
on, the range between the spacecraft can be measured every
second. However, to subsequently measure the range between
Yellow and another spacecraft, say Pink, the UHF radios of
Yellow and Pink need to be locked-on, which will take again 9
minutes. Likewise, by pointing the camera of one spacecraft
to another spacecraft, for example, if Yellow points its camera
to Blue, Yellow can measure the bearing of Blue with respect
to an inertially aligned reference frame centered at Yellow.
Once Yellow is pointing to Blue, the bearing of Blue can
be measured every second. However, if Yellow then wants
to measure the bearing of Pink, it will have to perform an
slew to point to Pink, which will take time and perturb the
orbit by introducing relative dynamics due to differences in
solar pressure as well as a potential increase in the number of
desaturation maneuvers.

Scheduling the range and bearing measurements between the
spacecraft is not trivial. One point to consider when defining
this measurement schedule is that if the range and bearing
between two spacecraft are measured at the same time, this
is equivalent to an instantaneous measurement of the relative
position vector between these two spacecraft, which is the
variable we are trying to estimate. If the range and bearing
between two spacecraft are taken at different times, explicitly
or implicitly, the filter will have to rely on some model of the
orbital dynamics to estimate the relative vector from these
asynchronous measurements. Hence, it is preferable to have
synchronous range and bearing measurements between two
spacecraft. Another point to consider is that to have similar
relative position knowledge between every two spacecraft,
the measurement schedule should foresee range and bearing
measurements between every two spacecraft. Unfortunately,
this implies frequent attitude slews.

Based on these two points, we suggest the measurement
schedule specified in Table 7. This measurement schedule
repeats every 50 minutes. This is the minimum time required
to measure the range and bearing between every two space-
craft in the formation using the sensors described previously.
The table shows the time intervals during which synchronous
range and bearing measurements are taken, with a frequency
of 1 Hz. It also shows how the different spacecraft are
interlocked during these time intervals.

Table 7. Measurement schedule, where t0 is the starting
epoch and k ∈ Z+.

Time Interval, min Pairs
Yellow - Blue

[t0 + 9 + 50k, t0 + 10 + 50k] Pink - Red
Green - Purple
Yellow - Pink

[t0 + 19 + 50k, t0 + 20 + 50k] Blue - Green
Red - Purple
Yellow - Red

[t0 + 29 + 50k, t0 + 30 + 50k] Blue - Purple
Pink - Green

Yellow - Green
[t0 + 39 + 50k, t0 + 40 + 50k] Blue - Red

Pink - Purple
Yellow - Purple

[t0 + 49 + 50k, t0 + 50 + 50k] Blue - Pink
Red - Green

Simulation Setup

A simple simulation was put together to demonstrate the
feasibility of this strategy. The true motion of the formation is
simulated by numerically propagating the initial conditions,
designed with the visually aided strategy, using a point-mass
gravitational model and a constant exogenous acceleration,

ṙIj/I = vIj/I , (21)

v̇Ij/I = −µ⊕
rIj/I

‖rIj/I‖3
+ aI , (22)

where rIj/I is the position of spacecraft j, j = 0, ..., 5, with
respect to the (origin of the) Earth-Centered-Inertial (ECI)
frame expressed in the ECI frame, vIj/I is the velocity of
spacecraft i with respect to the ECI frame expressed in the
ECI frame, and aI is the constant exogenous acceleration
expressed in the ECI frame. The constant exogenous acceler-
ation is a simple proxy for the main perturbing accelerations
at GEO. It is defined as aI = 10 × 10−6 [1 1 1]T√

3
m/s2. Its

magnitude reflects the expected magnitude of the perturbing
accelerations at GEO whereas its direction is set arbitrarily.
Due to the relatively short simulation time and because we
are ultimately interested in the relative positions between the
satellites, and not in their absolute positions with respect
to the ECI frame, this simple model is sufficient for our
feasibility study.

The absolute position/velocity of Yellow (satellite 0) is de-
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fined as the reference position/velocity to calculate the rela-
tive positions/velocities of the remaining 5 satellites, i.e.,

rILi/0 = rILi/I − r
IL
0/I , (23)

vILi/IL = vILi/I − v
IL
0/I , (24)

where i = 1, ..., 5 and the IL-frame is a frame aligned with
the ECI frame but centered at Yellow.

The measurements of the range between satellites k and l, as
measured by satellite l, where k, l = 0, ..., 5 and k 6= l, are
simulated through

rk/l,m = ‖rILk/l‖+ vrk/l
, (25)

where
rILk/l = rILk/0 − r

IL
l/0 (26)

and vrk/l
is a zero-mean discrete-time Gaussian white process

with variance

E
{
vrk/l

(t1)vT
rk/l

(t2)
}

= (1/3)2δt1t2 m2. (27)

On the other hand, the bearing measurements are divided in
right ascension and declination measurements. The measure-
ments of the right ascension of satellite k as seen by and
measured by satellite l are simulated through

RAk/l,m = atan2
(
rILk/l(2), rILk/l(1)

)
+ vRAk/l

, (28)

where vRAk/l
is a zero-mean discrete-time Gaussian white

process with variance

E
{
vRAk/l

(t1)vT
RAk/l

(t2)
}

= 352δt1t2 arcsec2. (29)

The measurements of the declination of satellite k as seen by
and measured by satellite l are simulated through

DEk/l,m = asin

(
rILk/l(3)

‖rILk/l‖

)
+ vDEk/l

, (30)

where vDEk/l
is a zero-mean discrete-time Gaussian white

process with variance

E
{
vDEk/l

(t1)vT
DEk/l

(t2)
}

= 352δt1t2 arcsec2. (31)

For every spacecraft interlock specified in Table 7, only the
left spacecraft is assumed to be taking measurements. One
could also study a scenario where both interlocked spacecraft
are taking measurements of the same relative position vector
at the same time. The estimation error is expected to decrease
in that case.

A simple Extended Kalman Filter (EKF) [43] was imple-
mented to estimate the relative position vectors rILi/0, i =

1, ..., 5. This EKF assumes no information is available about
the state (position, velocity, and acceleration) of satellite 0
with respect to the ECI frame, not even its mean motion. This
is a worst-case scenario as some information is expected to be
available about the state of satellite 0 with respect to the ECI,
either from GNSS measurements or ground measurements.

This analysis thus serves to bound the maximum expected es-
timation error when the inertial state of satellite 0 is unknown.
The continuous-time state equations of the EKF are given by

ṙILi/0 = vILi/IL, (32)

v̇ILi/IL = aILi/IL, (33)

ȧILi/IL = wi, (34)

where i = 1, ..., 5 and wi is a zero-mean Gaussian white
process with covariance

E {wi(t)wT
i(τ)} = Qδ(t− τ) = qI3δ(t− τ). (35)

Hence, between measurements, the EKF propagates the rela-
tive states of the spacecraft by assuming the relative accel-
erations aILi/IL are constant. Whenever measurements are
available, the EKF updates the estimates of aILi/IL. The
continuous-time state equations can alternatively be written
as

ẋ = Ax+Gw, (36)

where

x = [rIL1/0 ... r
IL
5/0 v

IL
1/IL ... v

IL
5/IL a

IL
1/IL ... a

IL
5/IL]T, (37)

w = [w1 ... w5]T, (38)

A =

[
015×15 I15 015×15
015×15 015×15 I15
015×15 015×15 015×15

]
, (39)

G =

[
015×15
015×15
I15

]
. (40)

Because (39) is time-invariant, the discretization of (36) is
straightforward. Ultimately, this means that the expected
value of x, i.e., x̂, can be propagated in time through

x̂[k + 1] = Φ[k + 1, k]x̂[k], (41)

where the discrete-time state transition matrix is given by

Φ[k + 1, k] = eA∆t (42)

and ∆t is the propagation time step. Likewise, the state
covariance matrix can be propagated through

P [k + 1] = Φ[k + 1, k]P [k]ΦT[k + 1, k] +Qd[k], (43)

where

Qd[k] =

∫ ∆t

0

Φ[k + 1, k]GQGTΦT[k + 1, k]dt. (44)

Both (42) and (44) have exact closed-form solutions.

For the measurement update, the derivatives of (25), (28),
and (30) with respect to x must be determined. They can
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be formed from

∂rk/l,m

∂rILk/
=

(rILk/l)
T

‖rILk/l‖
= −

∂rk/l,m

∂rILl/
, (45)

∂RAk/l,m

∂rILk/
=


−rILk/l(2)

rIL
k/l

(1)2+rIL
k/l

(2)2

rILk/l(1)

rIL
k/l

(1)2+rIL
k/l

(2)2

0


T

= −
∂RAk/l,m

∂rILl/
, (46)

∂DEk/l,m

∂rILk/
=



−rILk/l(1)rILk/l(3)√
1−

rIL
k/l

(3)2

‖rIL
k/l
‖2
‖rIL

k/l
‖3

−rILk/l(2)rILk/l(3)√
1−

rIL
k/l

(3)2

‖rIL
k/l
‖2
‖rIL

k/l
‖3
,

rILk/l(1)2+rILk/l(2)2√
1−

rIL
k/l

(3)2

‖rIL
k/l
‖2
‖rIL

k/l
‖3



T

=
∂DEk/l,m

∂rILl/
. (47)

The simulation is run for 400 minutes using a fixed-step
size of 1 second. This corresponds to 8 repetitions of the
measurement cycle described in Table 7.

The EKF is given initial guesses of the relative positions that
are 100 m away from the true relative positions in a random
direction. The EKF is also given initial guesses of the relative
velocities that are incorrect 1 cm/s in a random direction. The
initial guesses of the relative accelerations are set to zero.
Finally, the initial state covariance is given by

P [0]=

(100 m)2I15 015×15 015×15

015×15 (1 cm/s)2I15 015×15

015×15 015×15 (0.1 mm/s2)2I15


and the process noise is tuned to q = (1× 10−7)2 (m/s3.5)2.

Simulation Results

Figure 23 shows the true relative orbits in the IL-frame, a
frame aligned with the ECI frame but centered at satellite
0. Then, Figure 24 shows the true and estimated coordinates
of the relative positions also expressed in this frame. More
importantly, Figure 25 shows the error between the true
and estimated relative positions and their 3-sigma bounds,
as calculated by the EKF. The filter clearly reaches steady-
state after approximately 90 min, i.e., after approximately
two repetitions of the measurement cycle. The convergence
from the initial relative position errors is perfectly visible in
Figure 25, but even more apparent in Figure 26, which shows
the norm of the relative position estimation error for each
spacecraft.

The RMS errors of the relative position estimates after
200 min (after the filter has converged) are shown in Table 8.
Although the RMS error does not exactly satisfy the 3 meter
requirement, it is of the same order of magnitude. Again,
we remind the reader that the simple EKF presented here
does not know anything about the state (position, velocity,
acceleration) of satellite 0 with respect to the ECI frame.
With this information, the filter could do a much better job
propagating the relative positions and this should result in
smaller RMS errors. Further analysis is required to determine
how well the inertial state of satellite 0 can be estimated and
the impact of this information on the estimation of the relative
states.

Figure 23. True relative orbits in the IL-frame.

Figure 24. True and estimated relative positions expressed
in the IL-frame.

Figure 25. Relative position estimation error expressed in
the IL-frame.

Figure 26. Norm of the relative position estimation error.
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Table 8. RMS relative position estimation error after
200 min.

Spacecraft RMS, m
1 (Blue) 2.8
2 (Pink) 4.1
3 (Red) 4.1

4 (Green) 4.2
5 (Purple) 2.8

7. SUMMARY
In this investigation, we have developed a baseline strategy
for the design and operation of a passive cluster of spacecraft
forming a space-based interferometer in the GEO graveyard
orbit. Our science objective is to image the radio emitting
regions associated with coronal mass ejections and other solar
events, a task ideally suited for a space-based array loosely
bounded on the order of 10-km. The relative orbits compris-
ing the formation are initialized via dynamical systems theory
and the linear combination of invariant manifold components
associated with a baseline periodic orbit. We implement
two distinct design strategies, one based on human visual
intuition and another upon the particle swarm optimization
algorithm; these schemes can be pursued independently or
used in conjunction. Furthermore, we developed a proxy
for the imaging performance of the interferometer, enabling
the evaluation and construction of high-value spacecraft for-
mations while maintaining relatively rapid solution times.
Aspects of the on-orbit operations are considered, namely the
initial deployment and ongoing evolution of the array. The
∆v cost to initialize the array is on the order of 5-m/s, even
for a non-optimized strategy, while subsequent corrections
maneuvers are expected on the order of mm/s every few
weeks. Precise relative orbit determination is achieved via
the use of GNSS signals and ground-based reconstruction
techniques, where conservative simulations show that abso-
lute position knowledge is approximately 1-m and spacecraft-
spacecraft separation uncertainties are sub-meter over time.
An alternate strategy for relative positioning is also explored,
wherein UHF crosslinks and star-tracker / LED combinations
are used to allow spacecraft-to-spacecraft tracking capability.
A simple estimator is readily able to achieve 3- to 4-m
accuracy, just at the boundary of the spacecraft-spacecraft
position uncertainty allowed for our interferometric concept.

Based upon this work, we offer several observations, as well
as avenues for future exploration. First and foremost, above-
the-belt GNSS navigation enables this particular mission con-
cept without the need for extensive development of complex
inter-satellite networking technologies. On the other hand,
more traditional cross-linking approaches to relative orbit
determination are still viable, if necessarily more complex
and costly. Second, the nature of the target observations
permits the use of a passively flying cluster of spacecraft,
further simplifying on-orbit considerations and removing the
need for on-board autonomy. Third, intuitive deployment and
momentum desaturation schemes are operationally feasible
and cost-effective while still amenable to further optimiza-
tion. Fourth, human- and computer-guided design strategies
are both independently effective in delivering high-value for-
mation configurations, but show the most promise when use
is combined. While this investigation demonstrates the initial
feasibility of our mission design and navigation approach,
continued work could lead to further improvements. For

instance, refinement of the GNSS simulations could lead to
increased relative positioning accuracy while optimization
of the on-orbit deployment and operations strategies could
lead to further improvements in ∆v cost and mission safety.
Further development of the formation design and UHF cross-
linking schemes will help ensure the availability of alternate
implementations for the GEO graveyard mission concept as
well as potentially enabling alternate mission concepts, for
example lunar-centric or deep-space formation missions.
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